BACKGROUND: Cancer and normal stem cells (SCs) share proliferative properties of self-renewal and expression of key transcription factors (TFs). Despite similar TF identities, the functional role of specific TFs responsible for retaining SC state has yet to be examined in cancer. METHODOLOGY/PRINCIPAL FINDINGS: Here, we compare the role of Oct4 and Nanog, two-core pluripotent TFs, in transformed (t-hPSCs), and normal human pluripotent stem cells (hPSCs). Unlike normal SCs, self-renewal and survival of t-hPSCs were found to be independent of Oct4. In contrast, t-hPSCs exhibit hypersensitivity to reduction in Nanog and demonstrate complete loss of self-renewal coupled with apoptosis. Dual and sequential knockdown of Oct4 and Nanog revealed that sensitivity of t-hPSCs to Nanog was Oct4 dependent. CONCLUSIONS/SIGNIFICANCE: Our study indicates a bifurcation for the role of two-core SC and cancer related TFs in self-renewal and survival processes. We suggest that the divergent roles of these TFs establish a paradigm to develop novel therapeutics towards selective destruction of aggressive tumors harboring cancer stem cells (CSCs) with similar molecular signatures.
Sunday, December 6, 2009
Differences that separate normal vs cancer SC molecular circuitry
Pluripotent Transcription Factors Possess Distinct Roles in Normal versus Transformed Human Stem Cells by Junfeng Ji, Tamra E Werbowetski-Ogilvie, Bonan Zhong, Seok-Ho Hong and Mickie Bhatia, PLoS ONE 2009(Nov 30); 4(11): e8065 [FriendFeed entry][Full text is publicly accessible (via Libre OA)]. PubMed Abstract:
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment